On Cohomology of Hopf Algebroids

نویسنده

  • M. Khalkhali
چکیده

Inspired by [3] we introduce the concept of extended Hopf algebra and consider their cyclic cohomology in the spirit of Connes-Moscovici [3, 4, 5]. Extended Hopf algebras are closely related, but different from, Hopf algebroids. Their definition is motivated by attempting to define cyclic cohomology of Hopf algebroids in general. Many of Hopf algebra like structures, including the Connes-Moscovici algebra HFM are extended Hopf algebras. We show that the cyclic cohomology of the extended Hopf algebra U(L,R) naturally associated to a Lie-Rinehart algebra (L,R) coincides with the homology of (L,R). We also give some other examples of extended Hopf algebras and their cyclic cohomology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Para-Hopf algebroids and their cyclic cohomology

We introduce the concept of para-Hopf algebroid and define their cyclic cohomology in the spirit of Connes-Moscovici cyclic cohomology for Hopf algebras. Para-Hopf algebroids are closely related to, but different from, Hopf algebroids. Their definition is motivated by attempting to define a cyclic cohomology theory for Hopf algebroids in general. We show that many of Hopf algebraic structures, ...

متن کامل

On the Cyclic Cohomology of Extended Hopf Algebras

We introduce the concept of extended Hopf algebras and define their cyclic cohomology in the spirit of Connes-Moscovici cyclic cohomology for Hopf algebras. Extended Hopf algebras are closely related to, but different from, Hopf algebroids. Their definition is motivated by attempting to define a cyclic cohomology theory for Hopf algebroids in general. We show that many of Hopf algebraic structu...

متن کامل

Cyclic Cohomology of Hopf algebras and Hopf Algebroids

We review recent progress in the study of cyclic cohomology of Hopf algebras, Hopf algebroids, and invariant cyclic homology starting with the pioneering work of Connes-Moscovici.

متن کامل

A note on the new basis in the mod 2 Steenrod algebra

‎The Mod $2$ Steenrod algebra is a Hopf algebra that consists of the primary cohomology operations‎, ‎denoted by $Sq^n$‎, ‎between the cohomology groups with $mathbb{Z}_2$ coefficients of any topological space‎. ‎Regarding to its vector space structure over $mathbb{Z}_2$‎, ‎it has many base systems and some of the base systems can also be restricted to its sub algebras‎. ‎On the contrary‎, ‎in ...

متن کامل

On the Cohomology of Some Hopf Algebroids and Hattori-stong Theorems

We apply group cohomological methods to calculate the cohomol-ogy of K(n) BP as a K(n) K(n)-comodule, recovering recent results of Hovey and Sadofsky. As applications we determine the Chromatic Spectral Sequence for BP based on Johnson and Wilson's E(n), showing the relationship to some generalizations of the classical Hattori-Stong Theorem and determine the change of Hopf algebroid spectral se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008